Détection d’un élément lourd né de la collision entre étoiles à neutrons

Première détection d’un élément lourd né de la collision entre étoiles à neutrons
Au sein des données acquises par l’instrument X-shooter qui équipe le Very Large Telescope de l’ESO, une équipe de chercheurs européens a découvert les signatures du strontium créé lors de la fusion d’étoiles à neutrons. Sur cette vue d’artiste figurent deux étoiles à neutrons de faibles dimensions mais de densités élevées sur le point de fusionner et d’exploser en kilonova. A l’avant-plan figure une représentation du strontium nouvellement créé. Crédit : ESO/L. Calçada/M. Kornmesser

Première détection d’un élément lourd né de la collision entre étoiles à neutrons (ESO)

Pour la première fois, un élément lourd (du strontium)  a été détecté dans l’espace. La création de cet élément lourd fait suite à la fusion de deux étoiles à neutrons. Cette découverte a été effectuée par le spectrographe X-shooter qui équipe le Very Large Telescope de l’ESO. Elle fait l’objet d’une publication ce jour au sein de la revue Nature. Cette détection confirme la possibilité que les éléments les plus lourds de l’Univers se forment lors de la fusion d’étoiles à neutrons, complétant ainsi le puzzle de la formation des éléments chimiques. Voici le communiqué de presse publié par l’Observatoire Européen Austral.

En 2017, suite à la détection d’ondes gravitationnelles traversant la Terre, l’ESO a pointé ses télescopes chiliens, au premier rang desquels le VLT, en direction de l’événement source : une fusion d’étoiles à neutrons baptisée GW170817. D’après les astronomes, si les collisions d’étoiles à neutrons s’accompagnaient de la formation d’éléments plus lourds, les signatures de ces éléments pourraient être détectées au sein des kilonovae, ou vestiges explosifs de ces fusions. C’est précisément ce que vient de réaliser une équipe de chercheurs européens, au moyen de données acquises par l’instrument X-shooter installé sur le VLT de l’ESO. Suite à l’événement GW170817, la flotte de télescopes de l’ESO a effectué le suivi de l’explosion de la kilonova sur une gamme étendue de longueurs d’onde. L’instrument X-shooter a notamment acquis une série de spectres s’étendant de l’ultraviolet à l’infrarouge. Une première analyse de ces spectres suggéra la présence d’éléments lourds au sein de la kilonova. Toutefois, les astronomes demeuraient incapables alors de les différencier les uns des autres.

“Une nouvelle analyse des données acquises en 2017 lors de la fusion a récemment permis d’identifier la signature de l’un des éléments lourds composant cette boule de feu, démontrant par là-même que la collision des étoiles à neutrons s’accompagne de la création de cet élément dans l’Univers” précise Darach Watson de l’Université de Copenhague au Danemark, auteur principal de cette étude. Sur Terre, le strontium est naturellement présent dans le sol, et se trouve concentré dans certains minéraux. Ses sels sont utilisés pour conférer aux feux d’artifices une couleur rouge vif. Les astronomes connaissent, depuis les années 1950, les processus physiques donnant lieu à la création des éléments chimiques. Au fil des décennies suivantes, ils ont découvert les sites cosmiques de chacune de ces forges nucléaires, à l’exception d’une. Darach Watson ajoute :

Cette découverte sonne la fin de notre quête de l’origine des éléments chimiques. Nous savons désormais que les processus conduisant à la formation des éléments chimiques se produisent pour la plupart au sein des étoiles ordinaires, lors des explosions de supernovae, ou dans les enveloppes externes des vieilles étoiles. Jusqu’à présent toutefois, nous ignorions la localisation du processus ultime – la capture rapide de neutrons, responsable de la création des éléments les plus lourds du tableau périodique.

Lors du processus de capture rapide de neutrons, un noyau atomique capture des neutrons suffisamment rapidement pour permettre la création d’éléments très lourds. La plupart des éléments chimiques sont produits au cœur des étoiles. La formation d’éléments plus lourds que le fer, tel le strontium, requiert toutefois des environnements portés à des températures bien plus élevées et composés de nombreux neutrons libres. La capture rapide de neutrons ne se produit naturellement que dans des environnements extrêmes, au sein desquels les atomes sont bombardés par un nombre élevé de neutrons. Camilla Juul Hansen de l’Institut Max Planck dédié à l’Astronomie, Heidelberg, dont la contribution à cette étude s’avéra essentielle précise :

Pour la toute première fois, nous sommes en mesure d’établir un lien direct entre la création d’un nouvel élément par capture de neutrons et la fusion d’étoiles à neutrons, confirmant par là-même que les étoiles à neutrons sont composées de neutrons, et associant le processus de capture rapide de neutrons à ces fusions.

Les scientifiques commencent à peine à mieux comprendre les fusions d’étoiles à neutrons et les kilonovae. En raison de leur connaissance limitée de ces nouveaux phénomènes et d’autres interrogations soulevées par les spectres acquis par l’instrument X-shooter lors de l’explosion, les astronomes n’étaient pas en mesure d’identifier les éléments chimiques individuels jusqu’à présent. Jonatan Selsing de l’Université de Copenhague, l’un des auteurs principaux de l’article explique :

En fait, nous avons pensé que nous pourrions détecter le strontium peu après la survenue de l’événement. Toutefois, traduire cette idée en démonstration s’avéra particulièrement compliqué. Cette difficulté résultait de notre méconnaissance de l’apparence spectrale des éléments les plus lourds du tableau périodique.

L’événement baptisé GW170817 a donné lieu à la cinquième détection d’ondes gravitationnelles au moyen de l’instrument LIGO (Laser Interferometer Gravitational-Wave Observatory) de la NSF aux Etats-Unis et de l’Interféromètre Virgo en Italie. Située dans la galaxie NGC 4993, la fusion fut la première, et à ce jour la seule source d’ondes gravitationnelles dont la contrepartie visible fit l’objet d’un suivi et d’une détection par des télescopes au sol. Grâce aux efforts combinés de LIGO, de Virgo et du VLT, nous comprenons mieux que jamais le fonctionnement interne des étoiles à neutrons et leurs fusions explosives.

Animation de la fusion d’étoiles à neutrons et des éléments créés lors de ces événements

Sur cette vue d’artiste figurent deux étoiles à neutrons – des objets de faibles dimensions mais de densités élevées – sur le point de fusionner et d’exploser en kilonova. Ces objets constituent les principales sources des éléments chimiques lourds de l’Univers, tels l’or et le platine. La détection d’un élément lourd, le strontium (Sr), a trouvé confirmation dans l’étude des données acquises par l’instrument X-shooter installé sur le Very Large Telescope de l’ESO.

Source

Le communiqué de presse scientifique publié le 23/10/2019 est ici